
The DL on LLM Code Analysis

Richard Johnson

Principal Security Researcher

Eclypsium, Inc.



© 2024 Eclypsium 2

Principal Security Researcher, Eclypsium
Platform Security, Reverse Engineering and Fuzzing 
Edge Devices, UEFI, BMC, Firmware, etc

Owner, Fuzzing IO
Advanced Fuzzing and Crash Analysis Training
Contract fuzzing harness and security tool development

Contact
rjohnson@fuzzing.io
@richinseattle

https://eclypsium.com/


© 2024 Eclypsium 3

CTF 

ShadyBank Challenge/Response – Collab with Supersat

Olmstead Broadcasts – Collab with JSON & BLISS

Unpwnable Pwnable! 

Contact
rjohnson@fuzzing.io
@richinseattle

https://eclypsium.com/


© 2024 Eclypsium 4

Topics for today

▪ Deep Learning 101
▪ Security Applications of Deep Learning
▪ LLM Code Analysis Evaluation
▪ Threat Landscape



© 2024 Eclypsium 5



© 2024 Eclypsium 6



Deep Learning 101



© 2024 Eclypsium 8

Deep Learning 101

▪ Deep learning is a term that applies machine learning concepts using 
deeply connected artificial neuron layers

▪ Deep neural networks are able to automatically learn hierarchical 
representations and extract increasingly complex and abstract features 
from raw input data

▪ Through the process of training on large datasets, deep learning models 
can learn to recognize patterns, classify data into categories, or 
generate new data



© 2024 Eclypsium 9

Deep Learning Model Architectures

▪ Convolutional Neural Networks (CNN)
▪ CNN models can learn patterns in data that is arranged in a two dimensional configuration 

such as images or time series data
▪ A convolution uses small 2D grids (3x3) as sliding window “filters” that pass over each value 

in the data to infer spatial relationships
▪ Each filter is designed to detect a different feature in the data such as edges of an object in 

am image
▪ Mostly used for computer vision and image classification

▪ Recurrent Neural Networks (RNN)
▪ In contrast to Feed Forward Networks, RNNs have information that can flow forward or 

backwards.
▪ Natural language processing model focused on sequence-to-sequence problems such as 

translation, speech to text, or image to text.
▪ Long Short-Term Memory (LSTM) models extend RNN’s with a short-term memory 

mechanism



© 2024 Eclypsium 10

Deep Learning Model Architectures

▪ Transformers solve the short term memory issue with “attention” layers 
that allow past tokens to influence future token selection



© 2024 Eclypsium 11

Tokenizers

▪ Natural language text is broken into chunks called tokens
▪ Tokens can be words, symbols, numbers, or n-gram sub-components of 

words
▪ Tokenizers can be optimized for a specific language by analyzing 

common n-grams in the language such as the prevalence of consonant 
vowel pairs or common word suffixes like “-ing” or “-ed”

▪ Byte-Pair Encoding (BPE) is a common approach used by GPT and Llama
▪ The result of tokenizing natural language is an array of numbers that are 

indexes into the token dictionary



© 2024 Eclypsium 12

Embeddings

▪ Once text has been tokenized, the array of tokens is fed through an 
embedding layer to create an embedding vector

▪ Embedding vectors represent paths through a high dimensional space

▪ Embeddings can be stored in a vector database and used for semantic 
search or Boolean classification tasks

▪ Embeddings can be compared using Approximate Nearest Neighbor 
(ANN) search algorithm

▪ Cosine Similarity is a commonly used distance metric to compare vectors 
▪ Cosine Similarity is the dot product of the vector divided by the product of the lengths



© 2024 Eclypsium 13

MTEB: Massive Text Embedding Benchmark



© 2024 Eclypsium 14

MTEB: Massive Text Embedding Benchmark



© 2024 Eclypsium 15

Embeddings

▪ Only one of the models in the top10 are suitable for high throughput use 
for classification tasks or text retrieval tasks for RAG applications.

▪ mxbai-embed-large-v1
▪ Size: 0.67GB
▪ Dimensions: 1024
▪ Max Tokens: 512
▪ MTEB score: 64.68

▪ For larger sequences up to 8k nomic-embed-text-v1 is the best option
▪ Size: 0.55GB
▪ Dimensions: 768
▪ Max Tokens: 8192
▪ MTEB score: 62.39



Retrieval Augmented 
Generation (RAG)



© 2024 Eclypsium 17

Retrieval
Augmented
Generation



© 2024 Eclypsium 18

Retrieval
Augmented
Generation



© 2024 Eclypsium 19

Retrieval
Augmented
Generation



© 2024 Eclypsium 20

Retrieval
Augmented
Generation



© 2024 Eclypsium 21

Retrieval
Augmented
Generation



© 2024 Eclypsium 22

Retrieval
Augmented
Generation



Security Applications 
of Deep Learning



© 2024 Eclypsium 24

Reverse Engineering Assistants

▪ Reverser AI 
▪ @mr_phrazer

▪ Uses local LLMs to derive 
semantically meaningful 
function names from 
decompiler output 



© 2024 Eclypsium 25

Reverse Engineering Assistants



© 2024 Eclypsium 26

Reverse Engineering Assistants

▪ LLM4Decompile
▪ Fine tune of Deepseek



© 2024 Eclypsium 27

Fuzz Harness Generation

▪ OSS-Fuzz-Gen



© 2024 Eclypsium 28

Fuzz Harness Generation

▪ OSS-Fuzz-Gen



© 2024 Eclypsium 29

Fuzz Harness Generation

▪ OSS-Fuzz-Gen



© 2024 Eclypsium 30

Fuzz Harness Generation

▪ OSS-Fuzz-Gen



© 2024 Eclypsium 31

Fuzz Harness Generation

▪ OSS-Fuzz-Gen
▪ Rules: 

▪ There MUST be AT MOST ONE call to `ConsumeRemainingBytes` to consume remaining input!
▪ All variables used MUST be declared and initialized. Carefully make sure that the variable and argument 

types in your code match and compiles successfully. Add type casts to make types match.
▪ Do not create new variables with the same names as existing variables.
▪ EXTREMELY IMPORTANT: If you write code using `goto`, you MUST MUST also declare all variables 

BEFORE the `goto`. Never introduce new variables after the `goto`.
▪ If an example provided for the same library includes a unique header file, then it must be included in the 

solution as well.
▪ You MUST call `bool Json::Value::removeIndex(ArrayIndex index, Value *removed)` in your solution!

▪ Followed by three example problem/solution pairs



© 2024 Eclypsium 32

Fuzz Harness Generation

▪ OSS-Fuzz-Gen
▪ 1300+ benchmarks from 

297 open-source 
projects

https://github.com/google/oss-fuzz-gen/blob/main/benchmark-sets/all


© 2024 Eclypsium 33

Fuzz Harness Generation

▪ OSS-Fuzz-Gen
▪ 1300+ benchmarks from 

297 open-source 
projects

https://github.com/google/oss-fuzz-gen/blob/main/benchmark-sets/all


© 2024 Eclypsium 34

Fuzz Harness Generation

▪ OSS-Fuzz-Gen

▪ “Overall, this framework manages to successfully leverage LLMs to 
generate valid fuzz targets (which generate non-zero coverage increase) 
for 160 C/C++ projects. The maximum line coverage increase is 29% 
from the existing human-written targets.”



© 2024 Eclypsium 35

Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 36

Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 37

Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 38

Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 39

Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 40

Solving CTFs 



© 2024 Eclypsium 41

Solving CTFs 

▪ LLM Attack Challenge held in CSAW 2023
▪ LLM was given the ability to call functions

▪ run_command
▪ Createfile
▪ Disassemble
▪ Decompile
▪ Check_flag
▪ Give_up

▪ Local LLM Deepseek was able to solve 
challenges with human in the loop



© 2024 Eclypsium 42

Solving CTFs 



© 2024 Eclypsium 43

Solving CTFs 



© 2024 Eclypsium 44

Hacking the Planet
“We show that LLM agents can autonomously hack websites, performing tasks as complex as blind database 
schema extraction and SQL injections without human feedback. Importantly, the agent does not need to know 
the vulnerability beforehand”



© 2024 Eclypsium 45

Agents Can Be Applied to Multi-Step Reasoning
▪ Rigging agent system 

from dreadnode.io 
includes an example 
that solves a dozen 
levels of a basic CTF



LLM Code Analysis



© 2024 Eclypsium 47

Code Analysis Models



© 2024 Eclypsium 48

Code Analysis Models



© 2024 Eclypsium 49

Code Analysis Models



© 2024 Eclypsium 50

Code Analysis Models
HumanEval



© 2024 Eclypsium 51

Code Analysis Models



© 2024 Eclypsium 52

Code Analysis Models
MBPP



© 2024 Eclypsium 53

Code Analysis Dataset

▪ Ground Truth: Patches for existing vulnerabilities
▪ CVE is actually useful here in creating an specific ID for a vulnerability
▪ If a patch addresses a CVE, it is a security patch, if it is not labeled as a CVE it MAY not be

▪ Labeled Data: Ubuntu and Debian apt repositories 
▪ The apt-src repositories contain source code for every package
▪ The source packages contain original source and distribution specific patch sets
▪ Patches that fix a CVE are labeled via their filename 

▪ Question: can LLMs process diffs directly or should we extract the full 
functions impacted by the diff? 



© 2024 Eclypsium 54

Prompting for patch 
analysis



© 2024 Eclypsium 55

Prompting for 
function analysis



© 2024 Eclypsium 56



© 2024 Eclypsium 57

LLM Bug Identification from Patch Success Rate



© 2024 Eclypsium 58

Better Bug Identification Prompts



© 2024 Eclypsium 59

Use LLMs to Analyze Output of Static Analysis Tools



Threat Landscape



© 2024 Eclypsium 61

Threat Landscape

▪ Quantized model formats like GGUF have not been adequately sanitized



© 2024 Eclypsium 62

Threat Landscape

▪ Self-hosted 
infrastructure moves 
very fast and has no 
quality controls



© 2024 Eclypsium 63

Threat Landscape

▪ Self-hosted 
infrastructure moves 
very fast and has no 
quality controls



© 2024 Eclypsium 64

Start Your Fuzzers..



© 2024 Eclypsium 65

Start Your Fuzzers..



© 2024 Eclypsium 66

Threat Landscape

▪ Pytorch Models 
checkpoints are python 
pickle files

▪ Safetensors are a 
secure format that will 
not execute arbitrary 
code

▪ APIs require express 
permission to execute 
embedded code that 
extends pytorch 
functionality



© 2024 Eclypsium 67

Threat Landscape

▪ Pytorch Models 
checkpoints are python 
pickle files

▪ Safetensors are a 
secure format that will 
not execute arbitrary 
code

▪ APIs require express 
permission to execute 
embedded code that 
extends pytorch 
functionality



© 2024 Eclypsium 68

Threat Landscape

▪ Huggingface is 
based on git and 
has automated 
actions, such as 
converting unsafe 
pickle files to safe 
tensors.

▪ A token leak can 
lead to devastating 
impact



© 2024 Eclypsium 69

Threat Landscape

▪ Huggingface is 
based on git and 
has automated 
actions, such as 
converting unsafe 
pickle files to safe 
tensors.

▪ A token leak can 
lead to devastating 
impact



© 2024 Eclypsium 70

TOORCAMP THINGS

▪ The CTF is live! – Check the Toorcamp Wiki
▪ Beerocracy is live!
▪ The Robot – is my next onsite project!

▪ Undercurrents BBS https://undercurrents.io
▪ Launched at Toorcamp 2018 – live year-round, you might find clues there!

▪ Phone Numbers (online soon)
▪ 4CTF (leave a voice mail)
▪ BEER
▪ 4FAX

https://undercurrents.io/


© 2023 Eclypsium 71

Questions?
▪ LLM APIs are easy to use and can be 

leveraged for security applications

▪ The largest models from OpenAI, 
Anthropic and others are capable of 
performing basic code analysis tasks 
and can be improved through fine-
tuning and RAG 

▪ Agent frameworks, function calling, and 
constrained output via grammars or 
DSLs can expand the core capabilities 
of LLMs

▪ Local LLMs  have limited abilities but 
can perform if problem spaces are 
properly constrained



Thank You_


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

