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Topics for today

▪ Deep Learning 101
▪ Security Applications of Deep Learning
▪ LLM Code Analysis Evaluation
▪ Threat Landscape
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Deep Learning 101
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Deep Learning 101

▪ Deep learning is a term that applies machine learning concepts using 
deeply connected artificial neuron layers

▪ Deep neural networks are able to automatically learn hierarchical 
representations and extract increasingly complex and abstract features 
from raw input data

▪ Through the process of training on large datasets, deep learning models 
can learn to recognize patterns, classify data into categories, or 
generate new data
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Deep Learning Model Architectures

▪ Convolutional Neural Networks (CNN)
▪ CNN models can learn patterns in data that is arranged in a two dimensional configuration 

such as images or time series data
▪ A convolution uses small 2D grids (3x3) as sliding window “filters” that pass over each value 

in the data to infer spatial relationships
▪ Each filter is designed to detect a different feature in the data such as edges of an object in 

am image
▪ Mostly used for computer vision and image classification

▪ Recurrent Neural Networks (RNN)
▪ In contrast to Feed Forward Networks, RNNs have information that can flow forward or 

backwards.
▪ Natural language processing model focused on sequence-to-sequence problems such as 

translation, speech to text, or image to text.
▪ Long Short-Term Memory (LSTM) models extend RNN’s with a short-term memory 

mechanism
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Deep Learning Model Architectures

▪ Transformers solve the short term memory issue with “attention” layers 
that allow past tokens to influence future token selection
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Tokenizers

▪ Natural language text is broken into chunks called tokens
▪ Tokens can be words, symbols, numbers, or n-gram sub-components of 

words
▪ Tokenizers can be optimized for a specific language by analyzing 

common n-grams in the language such as the prevalence of consonant 
vowel pairs or common word suffixes like “-ing” or “-ed”

▪ Byte-Pair Encoding (BPE) is a common approach used by GPT and Llama
▪ The result of tokenizing natural language is an array of numbers that are 

indexes into the token dictionary



© 2024 Eclypsium 12

Embeddings

▪ Once text has been tokenized, the array of tokens is fed through an 
embedding layer to create an embedding vector

▪ Embedding vectors represent paths through a high dimensional space

▪ Embeddings can be stored in a vector database and used for semantic 
search or Boolean classification tasks

▪ Embeddings can be compared using Approximate Nearest Neighbor 
(ANN) search algorithm

▪ Cosine Similarity is a commonly used distance metric to compare vectors 
▪ Cosine Similarity is the dot product of the vector divided by the product of the lengths
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MTEB: Massive Text Embedding Benchmark
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MTEB: Massive Text Embedding Benchmark
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Embeddings

▪ Only one of the models in the top10 are suitable for high throughput use 
for classification tasks or text retrieval tasks for RAG applications.

▪ mxbai-embed-large-v1
▪ Size: 0.67GB
▪ Dimensions: 1024
▪ Max Tokens: 512
▪ MTEB score: 64.68

▪ For larger sequences up to 8k nomic-embed-text-v1 is the best option
▪ Size: 0.55GB
▪ Dimensions: 768
▪ Max Tokens: 8192
▪ MTEB score: 62.39



Retrieval Augmented 
Generation (RAG)
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Retrieval
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Retrieval
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Retrieval
Augmented
Generation



Security Applications 
of Deep Learning
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Reverse Engineering Assistants

▪ Reverser AI 
▪ @mr_phrazer

▪ Uses local LLMs to derive 
semantically meaningful 
function names from 
decompiler output 
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Reverse Engineering Assistants
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Reverse Engineering Assistants

▪ LLM4Decompile
▪ Fine tune of Deepseek
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen
▪ Rules: 

▪ There MUST be AT MOST ONE call to `ConsumeRemainingBytes` to consume remaining input!
▪ All variables used MUST be declared and initialized. Carefully make sure that the variable and argument 

types in your code match and compiles successfully. Add type casts to make types match.
▪ Do not create new variables with the same names as existing variables.
▪ EXTREMELY IMPORTANT: If you write code using `goto`, you MUST MUST also declare all variables 

BEFORE the `goto`. Never introduce new variables after the `goto`.
▪ If an example provided for the same library includes a unique header file, then it must be included in the 

solution as well.
▪ You MUST call `bool Json::Value::removeIndex(ArrayIndex index, Value *removed)` in your solution!

▪ Followed by three example problem/solution pairs
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen
▪ 1300+ benchmarks from 

297 open-source 
projects

https://github.com/google/oss-fuzz-gen/blob/main/benchmark-sets/all
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Fuzz Harness Generation

▪ OSS-Fuzz-Gen

▪ “Overall, this framework manages to successfully leverage LLMs to 
generate valid fuzz targets (which generate non-zero coverage increase) 
for 160 C/C++ projects. The maximum line coverage increase is 29% 
from the existing human-written targets.”
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Fuzz Harness Generation

▪ Moyix + Claude Opus
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Fuzz Harness Generation

▪ Moyix + Claude Opus



© 2024 Eclypsium 40

Solving CTFs 
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Solving CTFs 

▪ LLM Attack Challenge held in CSAW 2023
▪ LLM was given the ability to call functions

▪ run_command
▪ Createfile
▪ Disassemble
▪ Decompile
▪ Check_flag
▪ Give_up

▪ Local LLM Deepseek was able to solve 
challenges with human in the loop
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Solving CTFs 
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Solving CTFs 
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Hacking the Planet
“We show that LLM agents can autonomously hack websites, performing tasks as complex as blind database 
schema extraction and SQL injections without human feedback. Importantly, the agent does not need to know 
the vulnerability beforehand”
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Agents Can Be Applied to Multi-Step Reasoning
▪ Rigging agent system 

from dreadnode.io 
includes an example 
that solves a dozen 
levels of a basic CTF



LLM Code Analysis
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Code Analysis Models
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Code Analysis Models
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Code Analysis Models



© 2024 Eclypsium 50

Code Analysis Models
HumanEval
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Code Analysis Models
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Code Analysis Models
MBPP
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Code Analysis Dataset

▪ Ground Truth: Patches for existing vulnerabilities
▪ CVE is actually useful here in creating an specific ID for a vulnerability
▪ If a patch addresses a CVE, it is a security patch, if it is not labeled as a CVE it MAY not be

▪ Labeled Data: Ubuntu and Debian apt repositories 
▪ The apt-src repositories contain source code for every package
▪ The source packages contain original source and distribution specific patch sets
▪ Patches that fix a CVE are labeled via their filename 

▪ Question: can LLMs process diffs directly or should we extract the full 
functions impacted by the diff? 
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Prompting for patch 
analysis
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Prompting for 
function analysis
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LLM Bug Identification from Patch Success Rate
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Better Bug Identification Prompts
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Use LLMs to Analyze Output of Static Analysis Tools



Threat Landscape
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Threat Landscape

▪ Quantized model formats like GGUF have not been adequately sanitized
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Threat Landscape

▪ Self-hosted 
infrastructure moves 
very fast and has no 
quality controls
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Start Your Fuzzers..
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Start Your Fuzzers..
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Threat Landscape

▪ Pytorch Models 
checkpoints are python 
pickle files

▪ Safetensors are a 
secure format that will 
not execute arbitrary 
code

▪ APIs require express 
permission to execute 
embedded code that 
extends pytorch 
functionality
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Threat Landscape

▪ Huggingface is 
based on git and 
has automated 
actions, such as 
converting unsafe 
pickle files to safe 
tensors.

▪ A token leak can 
lead to devastating 
impact
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TOORCAMP THINGS

▪ The CTF is live! – Check the Toorcamp Wiki
▪ Beerocracy is live!
▪ The Robot – is my next onsite project!

▪ Undercurrents BBS https://undercurrents.io
▪ Launched at Toorcamp 2018 – live year-round, you might find clues there!

▪ Phone Numbers (online soon)
▪ 4CTF (leave a voice mail)
▪ BEER
▪ 4FAX

https://undercurrents.io/
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Questions?
▪ LLM APIs are easy to use and can be 

leveraged for security applications

▪ The largest models from OpenAI, 
Anthropic and others are capable of 
performing basic code analysis tasks 
and can be improved through fine-
tuning and RAG 

▪ Agent frameworks, function calling, and 
constrained output via grammars or 
DSLs can expand the core capabilities 
of LLMs

▪ Local LLMs  have limited abilities but 
can perform if problem spaces are 
properly constrained



Thank You_
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